THE - -SNAERPESIHNOT SHELL

’ General-Purpose Interrupt-and-Resume Software by Robert Sather

carkStar,

SYSTEMS

The Contents of this Manual are Copyright 1985
by Dark Star Systems Ltd.
78 Robin Hood Way, Greenford, Middlesex UB6 7QW, England

==ALL RIGHTS RESERVED==

Scanned by cvxmelody

http://www.cvxmelody.net/AppleUsersGroupSydneyApplellDiskCollection.htm

http://www.cvxmelody.net/AppleUsersGroupSydneyAppleIIDiskCollection.htm

Apple Computer, Inc. makes no warranties, either expressed or
implied, regarding the enclosed computer hardware and software

package, 1ts merchantability, or its fitness for any particular
purpose.

Disclaimer - Dark Star Systems Ltd. makes no representation or
warranty with respect to the contents herein contained, and
specifically disclaims any implied warranties of merchantability
or fitness for any particular purpose, and expressly disclaims
any and all 1liability for any special, incidental, or
consequential damages resulting from any use of the products
contained herein. Furthermore, Dark Star Systems Ltd. reserves
the right to revise this publication and to make changes from
time to time in the content hereof without obligation to notify
any person of such changes.

Limited Warranty - To the original purchaser only, Dark Star
Systems Ltd. warrants both the magnetic disk on which its soft-
ware is recorded and the Printed Circuit Board which, together,
constitute the system to be free of defects in materials and
faulty workmanship under normal service and use for a period of
12 months from the date the program is delivered. If, during
this 12 month period, a defect in either constituent of the
product should occur, you should contact the company from whom
you purchased 1t in order to obtain a Returned Merchandise
Authorization from Dark Star Systems Ltd. Provided that you have
returned the enclosed Warranty Registration Card, Dark Star
Systems Ltd. will repair or replace products which are covered
by the terms of its Warranty free of charge. b

Snapshot and Sﬁapshot Shell are Trademarks of Dark Star Systems
Ltd.

Apple II, I1I+ and //e are Trademarks of Apple Computer, Inc.

=

Contents

Secticn

(5]

(0]

b,

Getting Started

Subject

Backing up the Shell Disk

How a Snapshot Software Package

works

Going to Work on an Egz

How to write 2n Egz

Services provided by the Shell

STACKPTR
SLOTROM
FFEXSTOW

MEMSTATUS

RLSTOW

STATSTOW

Table 1 (FFEXSTOW)

Table 2 (SOFT)

Routines in the Jump Table
RESUME

DETVID

SETSOFT

GETSOFT

ISIT128K2E

HAYB0COL

ISITAZ2E

MSGOUT

RWTSE

TEXT1WAY

MSGOUT1

BOOTADISK

SWAFALL

Putting the Egg in the Shell
The Shell disk

The Menu Driver Routines

The menu subroutines
PRMENU
DOMENU

Contents

Page

T W T

e e e ot

b b
B b b

b
[y

iii

T
b <

<
[

vii
vii
vii
viii
viii
viii
ix
ix
ix

il
ii
ii

Section

U,

=
-t

Subject

The Menu Driver Routines (continued)

Memory Maps

CLRWINDOW
CLRWINDOW1
GETCURAX
ISITACTIVEX
MOFF

Before and after interrupt
Effects of SWAPALL
Shell file structure

Page

S s
iii
114
iv
iv

ii
iii

b HHE 5 Overviiew

Snapshot 1s the most useful card, after the disk controller,
that you will ever have in your computer. When a Snapshot
software package has been loaded into the card's 8K of on-board
RAM, 1t is possible to suspend a running program, examine and
manipulate it in some way, and resume running it from the point
of interruption.

Snapshot software packages are available for various purposes
including multi-tasking (the Shuttle), protected program backup
(the Copykit), and screen-editing and dumping (the Printerrupt).
All these packages have a common element which we call the
"Shell"™. This is the Snapshot card's "house keeper"; a sort of
memory manager and mini operating system which allows the
Snapshot software package to work within an interrupted program.

The Snapshot Shell is now provided to give software developers
and other programmers the ability to store their own machine-
code routines 1in the Snapshot card and make use of {its
interrupt-and-resume facilities. The Shell can also be used to
interface with commercially available software utilitlies such as
the Inspector and Watson.

Using the Shell, you can interrupt whatever your computer 1is
doing and take control of it with a Snapshot package written by
yvourself. It might be a super debugger, a graphics editor, a
comms package, or a machine control program; the only
restrictions are space (Jjust over UK available), and your
imagination. When you have finished with your Snapshot program,
you ecan return control of your computer to the interrupted
software without 1t ever knowing it was disturbed.

The Shell comes with menu-building routines which give you the
ability to create software packages just like ours. Authors who
wish to commercially exploit their own Snapshot software may do
so without any licence from - or payment to - Dark Star Systems
Ltd. Snapshot cards can be purchased for marketing with your
work by arrangement.

1. Overview i

You can backup

your essential software

Even if vou are an experienced computer professional, vou cannot
be sure vou will never accidentally corrupt or erase vour original program
disks. And, of course, disks have been known to wear out!

It vou are lucky, a damaged disk may mean weeks, sometimes
months, of waiting for a costly replacement. If vou're not so lucky, the

company which produced the program vou rely on has gone out of

business.

The only effective wav to sateguard vour software investment is to
make backups, but software protection makes this difficult. That's why
thousands of Apple users around the world, from multi-national corpor-
ations to backroom hobbvists, have invested in some protection of their
own - the Snapshot Copykit.

‘The Snapshot Copvkit is a powerful, fast and (dare we say it?)
“user-friendly” system that enables vou to copy ‘memory-resident
programs. It takes around 11 seconds to backup a program which uses
64K of RAM, and 25 seconds for one which uses 128 K. When the copving
process is complete, vou have an unprotected, bootable disk containing a
working copy of vour “protected” software.

Copykit backups are made up of binary files which can be casily
transferred to other storage media like hard-disk, 8" disk, 3.5 disks, 8O-
track disks, and even bubble-memory.

If vou just have standard Apple disks, you can use the Copykit's
highly eflicient compression option to reduce the amount of space vour
programs take up. That leaves you room to keep several diflerent
programs on a single floppy.

But making backups is just the beginning! With creative use of the
Copykit, vou can:
® Inspect and modify off-the-peg softzeare to suit your oten needs

® Save hours of loading and saving data files by suspending one program
while you run another
Load and save the largest spreadsheets in 25 seconds

Freeze-frame arcade game action, print ot high scores and plan
strategy

Save your favourite games at hard-to-reach high levels and return to
them again and again

Print out any 40- or 80-column text screen or graphics ' 1f vou have a
graphics card) and resume running your program instantly.

darkStar

SYSTEMS

p Getting Started

This manual assumes that you have already installed your Snap-
shot card in your computer. If you have not, please do so before
proceeding further. (If necessary, refer to the installation
instructions which accompany the Snapshot card.)

Backing up the Shell Disk:

Since any program which you write for use with the Snapshot card
will need to be stored on disk with the Shell, 1t 1s important
to make several backups of the Shell disk before beginning work.
Your Shell disk 1s not copy-protected in any way, so backing it
up 1is simply a matter of using the "COPYA" program on your DOS
System Master or a similar copying utility.

If you have 2 drives, you will probably find it convenient to
use the copy program supplied with the Shell. Getting into
BASIC, inserting the Shell disk in Drive 1 and typing BRUN
DISKCOPY <RETURN> will bring up the following display:

INSERT SOURCE DISK IN SLOT 6 DRIVE 1
INSERT TARGET DISK IN SLOT 6 DRIVE 2
FORMAT TARGET DISK? (Y, N, Q)

Place a blank disk in Drive 2 and press "Y" to start copying. We
recommend that you make at least 2 backups of your Shell disk to
start with. When you have made your copies, put your original
disk away for safe-keeping.

How a Snapshot software package works:

Before proceeding further, we should discuss briefly the basic
operating principles of a Snapshot program. It is helpful to
think of such a program as comprising two parts: the Shell
itself, and the applications routines which do the Jjob the
complete package was designed to do. The applications part will
be your contribution to the Snapshot program and, for the sake
of brevity, we will refer to it from now on as the "Egg".

The Egg and the Shell exist side by side on a single disk which
is booted at the start of any session where the Egg's services
are going to be required. Both parts of the Snapshot software
are loaded from the disk into the 8K of Snapshot RAM and stay
hidden there until you need them. In the meantime, you can run
any other programs you like.

Now, gsuppose you are running a program (let's call it
"BudgieCalc") and you need to make use of the facilities offered

2. Getting Started i

by the Egg. You simply press the Snapshot trigger to interrupt
BudgieCalc and bring up the Menu or whatever other means you
have designed to interface with the Egg. Behind the scenes, the
following sequence of events takes place:

1. The Snapshot card issues a Non-Maskable Interrupt (NMI)
to the computer hardware. This forces the computer to
interrupt BudgieCalc and pass control to the Shell.

2. The Shell takes note of the current state of BudgieCale,
memorising the address of the instruction that was executing
when the NMI was 1issued, the contents of the CPU's registers
and the condition of the soft-switches which control memory
bank switching and the screen.

3. The Shell takes itself and the Egg and swaps places with
an 8K portion of BudgieCalc. That bit of BudgieCale 1is
copled from the computer's main RAM to the Snapshot card's
RAM; the resulting empty space is simultaneously occupied by
your Snapshot software.

4., The Shell sets the following defaults:

- 8creen set to Text Page 1 and cleared;

- "Language card" space ($D000-$FFFF) set to ROM;

- alternate character set enabled on Apple //e:

- auxiliary RAM and zero page disabled on Apple //e;
- C800 ROMs on peripheral cards disabled:

- slot ROM space on Apple //e enabled;

- Text window set to full size;

- Page Zero set to normal DOS 3.3 defaults:

‘= RESET vector points to the beginning of this step. (If

i1

<RESET> pressed, all defaults renewed.)
5. The Shell sounds a chime and passes control to the Egg.

6. The Egg runs, doing whatever you designed it to do. It
can call routines built into the Shell to provide various
useful services:

- send text to thé screen;

- set the soft switches to any desired screen mode:

- detect the current state of the soft switches on the //e;

- copy to main RAM that displaced portion of BudgieCale
currently cached in the Snapshot card RAM;

- display BudgieCalc's Text or Graphics screens.

7. When you have finished with the Egg, it will return
control of the computer to the Shell which will then copy
itself and the Egg back into the Snapshot RAM. At the same
time, the Shell will restore the displaced 8K of BudgieCale,
reset the program's soft switches, screen and registers, and
resume running it from the exact point at which it was
interrupted.

2. Getting Started

e Going to wWork 'on =rn Eoz

How to write an Egg:

You can write the Egg using any editor/assembler, being careful
to bear in mind the following points:

1. The Egg should be designed to ORG at $B000 and end before
$C000.

2. The Shell passes control to an Egg from a JMP $B00O
instruction loaded at $AA00.

3. When the Egg has completed its task, it can return
control to the Shell with an RTS. Alternatively, it can JMP
to an address within the Shell's Jump Table (see below)
called "RESUMEPGM".

. Your Snapshot program will displace 8K of the program in
main memory and store it in the Snapshot card's RAM,
leaving pages $0-7 and $AB-BF free for 1its own use.
Addresses $0300-303F1 and $A800-$AFFF are occupied by the
Shell. The Egg may make free use of $0-$2FF, $3F2-7FF and
$BO00-$BFFF. The rest of memory contains the undisturbed
remainder of the interrupted program (which you mess with at
your peril).

Services provided by the Shell:

Let's examine the file on your Shell disk named "LISTING". As
its name would suggest, this file contains a listing of portions
of the Shell as it was assembled by the Apple ProDOS Toolkilt
Assembler. You can use it to refer to the addresses of routines
and data located within the Shell that your Egg can make use of.

The following 1is a further description of those routines and
data (variables not described here are not used by the Shell):

1. The $AB00 data area consists of variables that describe the
state of the suspended program at the exact moment of 1its

interruption. If these variables are altered, the interrupted
program may not resume properly:

STACKPTR = contents of the stack register.

SLOTROM = slot number of the card with its $C800 enabled (if
any).

3. Going to Work on an Egg i

FFEXSTOW = a byte containing single-bit flags describing the

state of the bank-switching soft switches on an Apple //e. " 0 o =i 2 o
(On a II+, this will be set to 0.) A bit is set to 1 if the : rCE il
corresponding switch is on; 1ie., 1f a read of the switch " B - % i
gives a negative value. Table 1 (page iii) labels each bit i I %0 « & d e
from 0 to 7, reading from right to left, and shows the : :: 8“3 . {u -E- g,n
effect of each when it 1is on. i P R/ e B
n (S} » E et
" “® 0 O Q3 . = c
MEMSTATUS = the address, when added to $C000, of the soft ' o 4 § A 2RE B S
switch that must be read twice to bank-switch the "language- X ey Sl Al 5y
card" space correctly. For example, a value of $8B means i = g4 ov o
that the address $CO8B would be read twice before the : T TR e
interrupted program could be resumed, causing the $D000- i E 0@ gy Soonn BT i
$FFFF RAM to be enabled with Bank 1 active. Q\ . i 8 ~ T e B o o
g] n o [bk & F ¥ =
] -l = = = o - I a 73] 73]
SOFT = eight single-bit flags that indicate the state of the 1 a & 4 d Do O o
screen soft-switches, Table 2 (page iv) labels each bit from A 503 T ggp Vil A
0 to 7, reading from right to left, and shows the effect of] LA e T S e A
each when it is on. On the Apple //e, SOFT (like the other . P T e G S T = e
variables) is set by the Shell just after the NMI is issued. - 2 o m{’_ﬁ R gy mg W A
On the Apple II+, since the hardware necessary to read the . 2 gl e i 18Rk . rpll Vg ol
state of the switches does not exist, SOFT must be set e H®n £ +H A Ok A Hd 0 @
manually by the user with the DETVID routine (see below) or N e e T o g AR s O T B i
an equivalent. oo gl Bl A T SR R " R B TR Lo
L] L™ (ST o B =1 7] k= = Q03 = =1] Q Qo
" —~dtd € = EPrd HUT < = =
ASTOW = the contents of the accumulator. -
n
XSTOW = the contents of the X-register. i (] 1
[B
YSTOW = the contents of the Y register. E o % : é
] E =] = o
RHSTOW = the contents of the Program Counter (high-order). - = B P & o
L] - o % Ec-; 2 ?2 1 [}
RLSTOW = the contents of the Program Counter (low-order). . E’«: E < 4 e o
" o e 2 o &= <
(Note that RHSTOW and RLSTOW contain the address of the :
first instruction to be executed when the interrupted i i
program resumes.) bt EE§§ & e b W . O e
STATSTOW = the coptents of the status register. e
o0 ¥
S
2. Located at $AA00, the Jump Table provides JMPs to the Shell's S % e
service routines. These can be accessed by doing a JSR to the . i "o
appropriate JMP instruction. Doing this will ensure that the : ﬁgg 2 Fias f.
Eggs you write now will be compatible with future versions of ey ’ S 8 8 ! 3] gl
the Shell. All routines return with an RTS. e St ol hid
01 &
The first JMP is the Shell's entry to your Egg. It points to g

$B000 wunless you change it. If you type, for example, BLOAD
SHELL, A$804 <RETURN>, this JMP will be located at $1200. The
change can be saved with BSAVE SHELL, A$804, L$1FFB <RETURN>.

11 Going to Work on an Egg
3. Going to Work on an Egg 111

iv

- SOFT

Table 2

Bit
Label

Corresponding

Effect when on

Name

Address

&]
] o py
L i \
~
s
- N
= L o o
B = . &
o] o
E - 2> 4 c
s 29
=Y 0 Q@ o~
-
mE £ “
£ 0 @ w 3 :
E L] o - 0
S8 - s
-\ & o &
0™ w =% @ @
7 L] 0 e A
@ = b= 0 O
E @ & o
L) . £
oo ‘l: 0 b+l o g a .
g T ® £ @ +HA £9
1] = L] - ey [T}
= L] o = —
0. e ¢ a4 9~ o
= L] L x =4 o o ag
1) = hel o o L] o
o8N P 0 & ¢ @@
- C . E o~ ' o
- L e [£~
e o QN CJURS. UERE. WS b U0
= O~ = > & &0 2 -
Sh a8 @ - 4 - ~B
< I “ > B R e < O
|
5]
2]
=1 =
i <
=] o~ 2] oy
= [l = =) 5] 5] O
1] b > > o > =
o o B N %
@ “ B = =% = -
=] - N M = N W
@ < m (4] (=] I=]
— - — - Ll -
o | B OB s 6
O 18] 14 (] 14] O
- » N N » =

3. Going to Work on an Egg

only)

Apple //e

(on

mode

80-column
enabled.

8ocoL

$CO1F

¢

Routines in the Jump Table:

NAME:

RESUME

FUNCTION:

INPUT:
OUTPUT:

USES:

Resumes running the interrupted program, undolng
everything which was done at NMI time. It packs
the Egg, the Shell and the lowest 8 pages into
the Snapshot card RAM, sets the soft-switches
and reglaters, restores and restarts the
interrupted program, and makes the Snapshot card
invisible to any software in main memory. The
resumed program will not be altered in any way
unless as a result of the Egg's operation.

None
Does not return to caller
Many zero-page locations, the :stack, etc. It . is

not safe to assume that the Egg will find {ts
zero-page data intact after the next NMI.

NAME:

DETVID

FUNCTION:

INPUT:
QUTPUT:

USES:

Permits viewing of the interrupted program's
screens and the setting of SOFT (see above).
DETVID waits for the user to press the left- and
right-arrow keys. Each key-press cycles the
display to a different video-mode. When the user
presses <ESC>, the current mode is stored in
SOFT.. the default mode is set, and control
returns to the caller. The value in SOFT will be
used to set the screen mode when the interrupted
program is resumed. Note that DETVID is usually
unnecessary on the Apple //e (where SOFT is set
by the Shell), but it's essentisl on the II-
(where SOFT can only be set by the operator).
SOFT remains set on the II- until BOOTADISK (see
below) is called, or until reset with DETVID.

Nene
Sets SOFT

All registers

3. Golng to Work on an Egg

NAME: SETSOFT
FUNCTION: Sets the screen mode soft switches to any
degsired setting, according to the values of the
bits in the accumulator (see Table 2, page 1v,
for a description of the significance of each
bit). SETSOFT neither uses nor modifies SOFT
itself. For example: a value of $64 in the
accumulator will make SETSOFT set the screen to
40-column Text Page 1, with the alternate
character set enabled (a default setting).
INPUT: - Accumulator
OUTPUT: None
USES: All registers
NAME: GETSOFT
FUNCTION: The reverse of SETSOFT, it works only on the
Apple //e. GETSOFT checks the current condition
of the soft switches and puts their settings
into the accumulator.
INPUT: None
OUTPUT: Accumulator
USES: All registers
NAME: ISIT128K2E
FUNCTION: Determines if the host computer is an Apple //e
with an extended 80-column card in auxiliary
slot 3. If so, the "=" flag is set.
INPUT: None
OUTPUT: "=" flag set if true.
USES: Accumulator
vi 3. Going to Work on an Egg

o O

NAME: HAY80COL
FUNCTION: Determines if the host computer 1s an Apple //e
with a standard- or an extended- 80-column card
in auxiliary slot 3. If so, the "=" flag 1s set.
INPUT: None
OUTPUT: "=" flag set if true
USES: Accmulator
NAME: ISITAZE
FUNCTION: Determines if the host computer is an Apple //e.
If so, the "=" flag 1is set. .
INPUT: None
OUTPUT: "a" flag set if true
USES: Accumulator, Y-register
NAME: MSGOUT
FUNCTION: Sends a message to the screen. A string of ASCII
characters, followed by a zero, should be
assembled immediately after a JSR to MSGOUT. The
characters will be sent to the screen (using
COUT1), starting from the current cursor
position. On the Apple II+, any lower-case
characters entered will be converted to upper-
case. Execution will continue immediately after
the zero following the ASCII characters (see the
source code on your Shell disk).
INPUT: None
OUTPUT: Sends messages to the screen
USES: All registers, $FE, $FF and monitor zero-page

locations

3. Going to Work on an Egg vii

NAME: RWTSE
densed
FUNCTION: Read/Write a disk sector, RWTSE is a con
version of RWTS (see the LISTING file on your
Shell disk for a complete comparison of the
two). RWTSE is present in the Shell from $BBOO
to $BFFF. 1If your Egg extends beyond $BD0O0, you
must not attempt to use RWTSE. (Note that
RWTSE's entry point is not at $BB00.)
INPUT: 1/0 block parameters
QUTPUT: Carry set/clear, error code
USES: All registers, DOS zero-page locations
NAME: TEXTIWAY
] P
! L}
FUNCTION: Copies the interrupted program s Text age
1 from the Snapshot card RAM to $0400-%07FF. This
copy may be altered or destroyed without
adversely effecting the interrupted program. The
page in Snapshot is left intact.
] INPUT: None
|
E OQUTPUT: None
|
\ USES: Al)l registers
f
‘ NAME: MSGOUT1
| FUNCTION: Sends & message to the screen, but differs from
i MSGOUT (see above) 1in that the horizontal
starting position is given by the X-reglater and
N the vertical starting position (from the top of
H the screen) is given by the Y-register.
INPUT: X and Y registers
OUTPUT: Message to screen
USES: As MSGOUT

viil

3. Going to Work on an Egg

v @

NAME: BOOTADISK
FUNCTION: Boots a new disk, clearing main memory. SOFT and
FFEXSTOW are reset, the I/0 vectors are
initialized, the Page 3 vectors are reset,
language-card RAM 1s disabled, the Shell and the
Egg are moved to the Snapshot RAM, and control
is given to the disk controller card.

INPUT: The slot to be booted should be in the
accumulator. (If the value is zero, the computer
will cold-start.)

OUTPUT: None
USES: As RESUME
NAME: SWAPALL
FUNCTION: Swaps those portions of the interrupted program

cached in the Snapshot RAM at NMI time back into
main memory, so that they can be accessed
without alteration. Other parts of the
interrupted program are simultaneously swapped
into the Snapshot RAM. (See memory maps.)
Swapped areas must be restored by running
SWAPALL a second time (or an even number of
times) before resuming the interrupted program.

INPUT: None

QUTPUT: None
USES: All registers

Putting the Egg in the Shell:

Once you have written your Egg, use FID to transfer it to one of

your copiles of the Shell disk. Now,

rename it (if you haven't

already done so) "Egg". Type: EXEC PUT EGG INTO SHELL <RETURN>.
This will run a short EXEC file program that BLOADs SHELL into

memory,
file.

BLOADs EGG into SHELL and BSAVEs the expanded SHELL

3. Going to Work on an Egg ix

When the reszulting disk is booted, SHELL is quick-lcaded 1into
memory at $804, =2sks you what slot the Snapshot card is in,
loads itself into the card's RAM when you respond., and asks you
to press the Snapshot trigger. At this point, pressing the

111 activate your Egg: pressing <RESET> (or <CTRL>
i1l leave you at the BASIC prompt.

The Shell disk:
The Shell iz supplied on a fairly ordinary DOS 3.3 disk. When it

iz booted, it loads the SHELL file to $804 and starts it
runninz. The DOS is modified to speed up BLOADinz and to let you

TLIST (display) a text file. Listinzs are stopped and restarted
by depressing the <SPACE> bar rather than the usual <CTRL>S,
INIT ic gone, and the RWTS cannot format a diskK.
v - gat 5 J -
il 1 " \ I. r - b: :
+ ok I v D
Mh g
s i 2
5 - . it A ‘(
-~ ey «' 4
il 11
s Tl
e 3, Going to Work on an Ezg

V)

e

¢ 2] The Menu Driver Routines

The Shell's menu driver routines are intended to offer you a
simple method of incorporating Snapshot-type cursor bar menus
into your Egg. These routines are entirely table driven and may
be called recursively, allowing several sub-menu levels to be
active simultaneously. Each menu or sub-menu requires one table
but only one copy of these routines is needed to handle all
menus.

Source code for the menu driver is contained in the text file
named "DOMENU" on the Shell disk. This file is in a format
compatible with the Apple DOS toolkit assembler, Apple //e
assembler, Big Mac and Merlin.

The basic procedure for using menus from within your Egg is as
follows:

1. Ensure that the computer is displaying the right video
mode (i.e., Text Page 1) with a full text window. (This will
only be necessary if your Egg has changed the video mode
since it received control from the Shell.) The text screen
should be cleared before displaying the menu.

e.g., JSR HOME ;CALL MONITOR AT $FC58
With sub-menus, you can clear just part of the screen if you

prefer. If you want to display a title on the screen, this
should be done before calling the menu itself.

2. Set up the Y and A registers to point to the appropriate
menu table.

e.g., LDA #MENUTABLE :LSB'TO A REGISTER
LDY #MENUTABLE/258 iMSB TO Y REGISTER

3. Call the PRMENU routine to display the menu on the
screen. (This will not put the cursor on-screen.)

e.g., JSR PRMENU ;s PRINT MENU
4. Call the DOMENU routine to operate the cursor bar for
selection of menu opticns. This routine accepts the left-
arrow key to move the cursor bar up and the right-arrow key

to move it down. A menu option is selected with the carriage
return Kkey. " ;

5. If DOMENU exits with the carry flag set (because an
unrecognized key has been pressed), you may check the value
in the accumulator to see if the pressed key 1s pertinent to
the operation of the Egg. If not, you should introduce a
loop back to the DOMENU call.

4. The Menu Driver Routines :

e.g., JSR DOMENU
BCC GOTONE

CMP #ESC

BNE LOOP
: FALLS THROUGH HERE IF <ESC> PRESSED

: IF <RETURN> WAS PRESSED

6. If DOMENU exits with the carry flag clear, the the option
selected 1s in the A and X registers and may be used to
access data in tables, or to branch to the required command
handler (see the demonstration program "GOMONITOR").

The Menu Subroutines (see GOMONITOR for menu table format)

NAME: PRMENU

FUNCTION: Displays menu from the menu table. Options may
be displayed in lower case, but all options will
automatically be converted to upper case if the
host computer is an Apple II+. PRMENU will not

display de-activated menu options.

INPUT: A = LSB of menu table's address; Y = MSB of menu
.3 ' ~table's address. . LS

| OUTPUT:

Leaves (MENP) pointing to start of menu table.
I]

USES: A, X, and Y registers; zero page $06 and $%$07.

| NAME: DOMENU

FUNCTION: Handles menu option selection. De-activated
' options ' ‘are:skipped “automatically.. The éarry
H flag 1is set if an unrecognized key (iie..
{ b 177 neither the' left-arrow, "the right-arrow®' nor
: <RETURN>) 1is pressed and that unrecognized key

i is in the A register (with top bit set).
INPUT: - Requires (MENP) to be pointed to the start of

the menu table.
iOUTPUT: Exit when <RETURN> is pressed with the selected
i taisr Option: pumberi. d0: $05 MAX)o Ins Shes fAdipand. s X
registers and when the carry flag is clear.

USES: A, X, and Y registers.

i1 4., The Menu Driver Routines

v o

U

NAME: CLRWINDOW
FUNCTION: Clears a (lower) portion of the screen to
display a sub-menu and homes the cursor to the
top left of the sub-menu "window". The size of
the text window is not set.
INPUT: None
QUTPUT: None
USES: A and Y registers.
NAME: CLRWINDOW1
FUNCTION: Provides an alternative enty point to CLRWINDOW,
clearing the screen from line A to EOP.
INPUT: The A register contains the line from which to
begin clearing.
OUTPUT: None
USES: A and Y registers.
NAME: GETCURAX
FUNCTION: Gets the current menu option number.
INPUT: Requires (MENP) to be pointed to the start of
the menu table,
QUTPUT: The A and X registers contain the current option
number. (Remember the first option number is 0,
not 1.}
USES: A and X registers.

4. The Menu Driver Routines iii

NAME: ISITACTIVEX
FUNCTION: Checks to see if the menu option number in X is
legal and active. This function is automatically
executed by both PRMENU and DOMENU, so you will
rarely need to use 1it.
INPUT: The menu option number to be checked in the X
register.

OUTPUT: The V flag is set if option X is not in range
for that menu; the carry flag 1s set 1if the
option has been de-activated.

USES: A, X, and Y registers.
NAME: MOFF
FUNCTION: Removes ~ thé‘cﬁra?r bar by replacing the menu's
highlighted 1ine with: normal . (non-inverse)
73T L A, : o
INPUT: Requires’(MENP) ito be pointed to the start of
the menu table. ! : ’
OQUTPUT: None ! ,
i . — ¢ . : }
USES: A, X, and.Y registers.
- an2 |
|
Tl | i :
! s ossin]
; " -.‘ ' 1

4. The Menu Driver Routines

U

. Memory Maps

a) Before interrupt:

Snapshot RAM

Main Memory

EGG

SHELL'S
bottom 8
pages

Running

Program

$BFFF

$BBOO

$B0O0O

$A800

s$0800

$0400

$0300

$0200

$0100

$0000

b) After interrupt:

Main Memory

Snapshot RAM

portion of
interrupted

program

Egg's Text
Screen

Egg's Zero
Page

| RWNTSE Interrupted
£ s | program's
$AB00-$BFFF
EGG portion
SHELL code
Interrupted
program's
bottom 8
pages
Unmoved

Note: all other areas of memory are unchanged by the interrupt.

4. Memory Maps

Effects of SWAPALL:

SHELL file structure:

Main Memory Snapshot RAM: Initial
$BFFF Load Address Execution Address
I $27FF $BFFF
| RWTSE Interrupted |
$BBOO | A program's | RWTSE
$6800-38800 |
EGG portion $2300 Ll i | il S $BBOO
$BO0D 48 LES LA R S _
The Egg
SHELL code
3$A800
Unmoved
portion of
interrupted
rogram
$8800 i $1800- L. oo R T e $B0O0O
Interrupted
D!‘OKI‘&II‘I'S SHELL code
bottom 8
ages
$8000 | _ f E i FI000 | IR e $a800
Interrupted SHELL code
program's 1 TN R L TR N T ‘0300"‘03?1‘?
$AB800-$BFFF
portion (unused)
36800 SO e e e RANERR S $0E30
Unmoved LOADER
portion of
interrupted
program (only used to
30800
initialize the Shell)
. Egg's Text
$0400 Ry $080l $o080u
SHELL code
SO0 L o0k
Free
$0200 | _ Lo
Egg's stack
$02.00 |- 1 VERS J
Egg's Zero i
Page '
$0000 i
L, Memory Maps 111

dd 4. Memory Maps

You can take complete
control of your printer

‘There are always occasions when the program you are running
displays a screen which you would like to keep for reference or include in
a print-out produced by another program. It may be a help-menu, on-
screen instructions, a graph, bar-chart or just a great picture.

Unfortunately, conventional printing utilities suller from some
major drawbacks. In order 1o use them with anything other than text or
graphic files, you have to be able 1o suspend work on a running program.
‘Ihe trouble is, there are a lot of protected programs out there which
won't allow you to interrupt them by the usual methods; they'll either
“freeze” your Apple or simply reboot. Even il you can mterrupta running
program to print its display, it's unlikely that you'll be able to resume itat
the point where you left ofl. :

‘I'he Snapshot Printerrupt, with its automatic interrupt-and-
resume features, is the perfect solution to these problems. At the press ola
button, it gives you the most powerful set of printing utilities avinlable.
‘T'ake a look at these features . . .

® Easv selection of anv graphics or text page (mncluding 80-col) Jor
printing
@ Sophisticated on-screen cropping of graphics or text pages

Independent enlargement up o 8 times of vertical (v) and horizontal (x)

axes

Clockwise and anti-clockwise rotation

Inversion and Enhancement

Shading of white or black arcas

Auto-centering, and left and right margin seteng in any denssy
Chart recorder mode

Quick changing of international character sets and fonts

Stngle kev-press resumption of interrupted program

‘The Printerrupt automatically supports all the popular printers,
printer-interface cards and 80-column cards. I your equipment 1s
unusual, Dark Star Systems offers a unique, free configuration service
which will get yeur Printerrupt up and running.

SYSTEMS

¥

?r=

Your Apple can do more

than one job at a time

No matter what you use your computer for, the chances are that
vou need to switch between several different tasks many times during the
course of a typical working day. Repeatedly closing down your current
program, booting another and then finding the place where vou left off
wastes your valuable time and disrupts your flow of work.

Lumping several different applications together on the same disk
doesn't always solve the problem. So called “integrated™ programs don't
necessarily combine the applications vou want and, even if vou find one
that does, it won't give vou the sort of power that you're used to. Besides,
you have probably invested a great deal of ime, money and effort in
getting to grips with the programs you use now; do you really want to
start all over again with something completely different?

“The Snapshot Shuttle is a multi-tasking system which allows you
to combine the applications which you actually want to work with - the
ones you own already. So, if vou want to interrupt your spreadsheet
program to use your modem, or to word-process a letter, or just to zap a
few aliens, you can do so without swapping program disks or re-booting.
When you want to return to the spreadsheet, the Shuttle can resume it
exactly where it was interrupted - instantly. The Shuttle will even let you
switch between programs which use differing operating systems like
ProDOS, PASCAL, CP/M and DOS 3.3.

You will need at least 64K of RAM for every program vou wish 1o
have loaded into the Shuttle system at any one time. This extra RAM can
be provided by any standard ::\p.msmn card (e.g., Ramex, Saturn:litan,
Apple ‘e extended 80-column etc. Jp

If you don't have enough RAM at the moment, our RAMrod 128
card gives vou 128K of extra memory for about half the cost of its
competitors: It comes complete with RAMdisk software and is fully
compatible with the popular spreadsheet expansion packages.

SYSTEMS

	Cover
	Disclaimer & Contents
	Contents & 1. Overview
	2. Getting Started
	3. Going to Work on an Egg
	4. The Menu Driver Routines
	5. Memory Maps
	Snapshot Printerrupt & Shuttle ads

